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1 Overview

My research interest is in Dynamical Systems and their applications. I am currently on my second postdoc
at Pennsylvania State University. My first postdoc was at Loughborough University (UK), where I worked
with Anatoly Neishtadt on perturbations of integrable systems. My PhD research (under supervision of Yulij
Ilyashenko, at Higher School of Economics, Moscow, Russia) was on discrete dynamical systems; I worked on
problems involving iterated function systems, attractors, hyperbolicity and partial hyperbolicity.

2 Thick Arnold tongues

My most recent completed project ([1], joint with Mark Levi) is a study of a physically motivated dynamical
system exhibiting nontrivial and perhaps unexpected properties. The mathematical explanation involves
perturbation theory and circle maps dynamics, and this system also has connections with number theory and
topology. The example we study originates from particle transport in fluid flows: it is a simplified mathematical
model of a small inertial particle drifting in a fluid and pulled by gravity proposed by Maxey and Corrsin
in 1986, [2]. The fluid motion in this example is given by the cellular flow, a periodic Hamiltonian flow on
the plane along the level curves of H = cosx cos y (Figure 1a). We are interested in the case when the cells
are not aligned with gravity. As the vertical direction is already booked by cell orientation, the direction of
the gravity becomes a parameter given by a vector (b, a) ∈ R2. We call this vector forcing, and it can be
interpreted as terminal fall velocity of the particle in still fluid.

When the particle is so small that the effect of its inertia is negligible (zero inertia case), its movement is
given by the following Hamiltonian vector field (Figure 1b):

v(x, y) =
(∂H
∂y

,−∂H

∂x

)
, H(x, y) = cosx cos y − ax+ by. (1)

This model (1) was introduced in the context of particle transport as early as 1949 by Stommel [3].

(a) Cellular flow.

cos(x)cos(y) - 0.1x + 0.133y

(b) Hamiltonian flow v. Regions with unbounded
trajectories are highlighted in green and yellow.

Figure 1: Fluid flow and Hamiltonian flow v(x) describing particle movement for zero inertia case.

A particle with small but nonzero inertia has a velocity of its own; however, the fluid drag force proportional
to the velocity mismatch between the particle and surrounding fluid makes its motion close to the motion of
a zero inertia particle.1 Let x = (x, y) and ẋ = (ẋ, ẏ) denote the particle’s position and velocity and let ε > 0
be a small parameter describing the inertia strength. Then particle’s movement can be modeled by a second
order ordinary differential equation:

ẍ = −1

ε
(ẋ− v(x)), x ∈ R2. (2)

1A simple computation shows that the total force acting on the particle (the fluid drag plus gravity) is proportional to the
difference between the actual particle velocity and the velocity v a zero-inertia particle would have.
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Such a model is a simplified case of the Maxey-Riley model [4] and is often used in the literature on particle
transport; cellular flow is also a very common choice of the fluid flow. While a spherical particle moving in
a cellular flow without the gravity would simply approach the cell boundaries, many variations of this setup
exhibit nontrivial dynamics. To name just a few references (more can be found therein), there are studies of
particles in a cellular flow that are influenced by random thermal noise [5], are asymmetric [6] or compound [7],
as well as studies of particles in time-dependent cellular flow [8].

To describe the particle motion given by (2) and (1), consider the trajectories of the Hamiltonian vector
field v first (Figure 1b). Those are simply level curves of H(x, y). Assuming that the forcing (b, a) is fairly
small, most of the trajectories are bounded, but some ”channels” formed by unbounded trajectories appear. All
unbounded trajectories are at a finite distance from a straight line with the slope a/b, as H = −ax+by+O(1)
is constant on the trajectories. As a side note, the combinatorics of these unbounded trajectories is quite
intriguing (Figure 2a) and is connected to symbolic dynamics as well as to number-theoretical properties of
b/a. Additionally, the picture in Figure 1b is an (easy) special case of a beautiful problem by Sergei Novikov
([9], see also surveys [10] and [11]): to study the topology of a foliation of a closed surface (in our case the
torus, as v is periodic) given by a closed 1-form on it (in our case, dH).

(a) Unbounded trajectory of the
Hamiltonian flow v follows a line
with the slope a/b. (b) Particle drift for different forcing directions.

Figure 2: A trajectory of the Hamiltonian flow v(x) and particle drift according to (2).

Our interest in this problem was motivated by unusual properties of inertial particle motion, as modeled by (2)
with v given by (1), that we first observed in numerical experiments. While inertial particle trajectories also
have an asymptotic slope that does not depend on the initial data, the direction of the particle drift does not
coincide with the forcing direction (Figure 2b). Moreover, as Figure 2b (top) illustrates, a small 0.5◦ change
in the direction of the forcing causes a drastic change of the direction of the trajectory.

We investigate how the direction of particle drift depends on the slope a/b of the external
forcing and prove that when a and b are positive but fairly small2 for any small enough ε > 0

– Particle drift slope ρ exists and does not depend on the initial data (x(0), ẋ(0)), given that (x(0), ẋ(0))
is outside of a very small subset of R4 given by a countable union of codimension one manifolds.

– For fixed b and ε, the dependence of particle drift slope on the forcing slope α = a
b is a Cantor-like

function with steps at all rational values of ρ (Figure 3a).

– The function ρ(α) is steep at the endpoints of the steps: if one takes α0 at the right endpoint of any

step, for any n ∈ N we have lim∆α→0+
(ρ(α0+∆α)−ρ(α0))

n

∆α = ∞.3 This explains the abrupt changes of ρ
we observed in numerics.

– The set of the values of α such that ρ(α) is irrational (equivalently, the complement to the union of the
steps) has zero Hausdorff dimension (and hence zero Lebesgue measure as well).

In the above description, the parameter ε in (2) was fixed. A fuller picture can be seen when ε is varied as
well: for each rational number p

q , one can draw the set (called a tongue) of all pairs (ε, α) giving particle drift

slope equal to p
q (Figure 3b). The picture we get is similar to the famous Arnold tongues example [12], but,

unlike it, the union of all tongues occupies a full Lebesgue measure – hence we use the name ”thick Arnold
tongues” for this example.

2We assume a, b ∈ (γ, δ) with δ small enough; then there exists ε1 = ε1(γ, δ) such that conclusions hold for all positive ε < ε1.
3Which is like the inverse function to the classic Calculus example y = e−1/x. It was a pleasant surprise to find such a function

outside a textbook.
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(a) ρ(α) for fixed ε

(b) Arnold tongues for ρ(ε, α). If all
the tongues were shaded, blue color
would occupy full measure.

Figure 3: Particle drift slope ρ as a function of forcing slope α and inertia parameter ε.

This description is obtained using tools from perturbation theory and circle maps dynamics. As observed
by Rubin, Jones, and Maxey [13] using Fenichel’s results [14] on normal hyperbolicity, the system (2) in
R4 ∋ (x, ẋ) admits a two-dimensional attracting invariant manifold and the restriction of the dynamics to it
(using x as a coordinate) is a small (of order ε) dissipative perturbation of the Hamiltonian flow v(x) given
by (1). As v(x) is periodic, the particle dynamics given by (2) is periodic in x, and this manifold is a covering
space of the 2-torus. This reduces (2) to a torus flow depending on the parameter α = a/b (we assume b and ε
are fixed, then a(α) = αb). Taking the first return map further reduces the problem to the study of a family of
circle maps possessing a special feature: they have two flat spots, that is, two intervals where these maps are
constant. The particle drift slope coincides with the rotation number of the circle map up to a linear scaling.

Circle maps with flat spots were considered by many authors and appear naturally as first return maps for
Cherry flows on torus and as truncations of non-invertible circle endomorphisms. We build on the works of
Boyd [15] and Veerman [16] to understand how the rotation number depends on the parameter α in the case
at hand. This involves a careful study of the properties of the circle map family originating from the model
of particle transport and generalizing Veerman’s theorem [16] claiming zero Hausdorff dimension of the set
of parameters with irrational rotation number for families of circle maps with one flat spot to the case of an
arbitrary number of flat spots.

3 Averaging and separatrix crossings

3.1 A brief non-technical overview

Separatrix crossings for small perturbations of integrable systems are important in many applications such as
celestial mechanics and dynamics of charged particles. My favorite example is the work [17] by Jack Wisdom
describing how consecutive separatrix crossings change the orbits of asteroids in a resonance with Jupiter
resulting in the formation of the Kirkwood gaps within the main asteroid belt.4 To introduce separatrix cross-
ings for readers with interests far from perturbation theory, let us examine the following example. Consider
a particle with position and velocity x, ẋ ∈ R in a double-well potential V (x), Figure 4a. Then let us add to
this unperturbed system a small dissipative force εf acting on it, called the perturbation:

ẍ = −∂V

∂x
+ εf(x, ẋ). (3)

The unperturbed system is a completely integrable Hamiltonian system, and the energy E = ẋ2

2 + V (x) is a
first integral. To study the change of energy due to the perturbation, one can average the rate of change of E
over periodic solutions of the unperturbed system and get a one-dimensional ODE. This system is called the
averaged system, Figure 4b. If the energy for the averaged system decreases (e.g., f includes friction), then the
particle will eventually be trapped into one of the two wells. This is called separatrix crossing, as the solution
of (3) goes through a separatrix of the unperturbed system, the figure-eight shape in Figure 4a. Note that
the particle can be captured into each of the two wells5, so one has to consider two solutions of the averaged
system. Then one of them will be close to the actual evolution of the energy, with the error O(ε ln ε), [18, 19].

4This mechanism is also considered to be a possible source of Earth-crossing asteroids.
5And order one averaging method cannot determine which well it will be captured in.
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One also has to remove a small measure of initial data that ”cannot decide” between the two wells and gets
trapped near the point C between them.

(a) Unperturbed system. (b) Averaged system and resonant zones.

Figure 4: Example of separatrix crossing.

Suppose now that the perturbing force periodically depends on the time: ẍ = −∂V
∂x + εf(x, ẋ, t) with

f(x, ẋ, t) = f(x, ẋ, t + 1). Then, in order to obtain the averaged system, one averages with respect to both
φ and t, where φ ∈ [0, 2π] is the angle from the pair of action-angle variables. These variables parametrize
periodic trajectories of unperturbed system in such a way that φ̇ is constant along each trajectory. The
unperturbed dynamics of (φ, t) for fixed E is a linear torus flow, and typically (for irrational winding) the
time average will coincide with the spatial average. However, this is not the case if E corresponds to a rational
winding of the torus, and this leads to a larger error of averaging. Such values of E are called resonant, and
when E changes, it crosses resonant values, Figure 4b.6 For most initial data, crossing a resonance causes
a O(

√
ε) deviation from the averaged system, but a small measure of initial data can be captured into the

resonance – that is, E(t) gets trapped near the resonant value for a time of order 1/ε, leading to order 1
deviation from the averaged system.

In [20] (joint with A. Neishtadt, submitted), we rigorously estimate the accuracy of averaging method
for small perturbations of completely integrable two-frequency Hamiltonian systems near sep-
aratrices. One can keep in mind the example above, where the two angular variables are φ and t. However,
our setting is perturbations of general two-frequency systems, and we also allow the Hamiltonian to depend on
parameters slowly changing due to the perturbation. We show that for any initial data outside a small measure
set corresponding to solutions close to capture into a resonance, the corresponding solution of the perturbed
system is approximately described by the averaging method with the accuracy O(

√
ε). This accuracy cannot

be improved, as a single passage through resonance causes such error. This result extends Neishtadt’s Theorem
(1975, [21]) on two-frequency systems far from separatrices to the general case with separatrix crossings and
provides rigorous justification for the use of averaging method in this setting, which is frequently encountered
in applications. This was a challenging problem with many difficulties to overcome. To name one, far from
separatrices there are only finitely many resonances such that capture is possible, while in our setting there can
be an infinite number of resonances allowing for capture, and these resonances accumulate on the separatrices.

A side result of the same project with A. Neishtadt is an estimate [22] on the accuracy of order two
averaging method for non-Hamiltonian perturbations of one-frequency systems. For the example above, this
is the case when f does not depend on t. Order 2 averaging allows one to track the evolution of the angle φ
after separatrix crossing, which is impossible using the standard (order one) averaging method. In particular,
for our example order 2 averaging describes in which well the particle will be captured. Such formulas for the
angle φ after a separatrix crossing were obtained before for various settings when the perturbed system is also
Hamiltonian [23, 24].

3.2 Background: perturbations of integrable systems and averaging method

The averaging method is a classical powerful tool in perturbation theory of dynamical systems. In particular,
it is widely used for perturbations of completely integrable Hamiltonian systems. Consider a Hamiltonian
system

ṗ = −∂H

∂q
, q̇ =

∂H

∂p
, p, q ∈ Rn,

where the Hamiltonian H(p, q, z) may also depend on a parameter z ∈ Rk. Assume that this system is
completely integrable, i.e., there exist action-angle variables I ∈ Rn, φ ∈ Tn = Rn/Zn such that in these

6one can leave only O(| ln ε|) resonant values, as others have negligibly small effect on the dynamics
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variables the dynamics writes in the form

İ = 0, ż = 0, φ̇ = ω(I).

Completely integrable systems with ω ∈ Rn are often called n-frequency systems. Action-angle variables do
not necessarily exist globally, there may be several domains with their own action-angle variables, and the
boundaries between such domains are called separatrices.

Now, consider a small perturbation of the integrable system:

ṗ = −∂H

∂q
+ εfp(p, q, z), q̇ =

∂H

∂p
+ εfq(p, q, z), ż = fz(p, q, z). (4)

The actions I of the unperturbed system and the parameter z are the slow variables of the perturbed system,
and change by O(1) over time intervals of order at ε−1. As the phases φ change much faster, solving such
systems numerically is often unfeasible. Instead, the averaging method is usually used: one averages the rates
of change of the slow variables over the phases φ, and writes the averaged system

˙̄I = f̄I(Ī , z̄), ˙̄z = f̄z(Ī , z̄). (5)

Then the evolution of slow variables along a solution of (4) can be approximated by a solution (Ī(t), z̄(t)) of
the averaged equation.

The simplest setting is a perturbation of a one-frequency system far from separatrices, then averaging
method works for all initial data with accuracy O(ε) over time intervals of order ε−1. Two main obstructions
that arise in more complicated settings are resonances and separatrix crossings.

Separatrix crossings are possible even for one-frequency systems: due to the perturbation solutions of
the perturbed system can cross separatrices of the unperturbed systems. As the angle φ from the pair of
action-angle variables is undefined on separatrices, the equations used to justify the averaging method have
a singularity there. Additionally, a small fraction of solutions spends a large time near the separatrix (e.g.
in the example in Figure 4a the particle can be trapped at the point C between the two potential wells). In
the one-frequency case, separatrix crossings are well studied; in particular, the change of slow variables along
most7 solutions of (4) (with one-dimensional p and q) is described by a solution of the averaged system with
the accuracy O(ε) before separatrix crossing and O(ε| ln ε|) after it ([25]).

Resonances appear starting with two-frequency systems, and for simplicity we will restrict ourselves to
the case of two frequencies only. Then, ω(I) = (ω1(I), ω2(I)), and a resonance happens when ω1 and ω2 are
commensurate: ω2

ω1
= s2

s1
∈ Q. This is a codimension one manifold in the space of slow variables Rn

I × Rk
z . At

a resonance the trajectories of the fast system φ̇1 = ω1, φ̇2 = ω2 do not fill the whole torus, and averaging
may thus fail near resonances. Indeed, it turns out that a small measure of initial data (of order

√
ε) can be

captured in a resonance (Figure 5a, this means that the resonance is preserved along solutions of the perturbed
system for a large time). Most solutions pass through the resonance, but experience scattering, a jump of the
magnitude O(

√
ε), Figure 5b. Far from separatrices there are only finitely many resonances such that capture

is possible (corresponding to rational numbers s2/s1 with small numerator and denominator).

(a) Capture into a resonance. (b) Scattering on a resonance.

Figure 5: Crossing a resonance.

Neishtadt’s theorem ([26], see also [27]) justifies the use of averaging method for small perturbation of
two-frequency integrable systems far from separatrices. It claims that under some genericity conditions for
any initial data outside an exceptional set of measure O(

√
ε) the evolution of I(t) and z(t) along the solutions

of perturbed system (3) is O(
√
ε) close to a solution of the averaged system (5) over times of order ε−1.

7The exceptional set corresponds to solutions that are trapped near separatrices; it can be taken to have the measure O(εr).
for any r > 0
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3.3 Separatrix crossings for perturbations of two-frequency systems

Theorem ([20], joint with A. Neishtadt). Consider a perturbation (4) of a two-frequency integrable system.
Suppose certain nondegeneracy conditions8 are satisfied. Then when ε is small enough, for any initial data
except a set of small measure O(

√
ε| ln ε|5) the accuracy of the averaging method is O(

√
ε) even for systems

with separatrix crossings.

This result is valid for the general case (i.e., the perturbed system can be non-Hamiltonian), but it is also
new for the case when the perturbed system is Hamiltonian (e.g., for slow-fast Hamiltonian systems – then
the slow variables can be treated as a parameter z).

Details. Compared with the setting of Neishtadt’s theorem (i.e., far from separatrices), we had several
conceptual difficulties, in addition to many technical ones. Resonant zones such that capture is possible
can accumulate on separatrices (Figure 4b), while far from separatrices there are only finitely many such
resonances. Action-angle variables have a singularity on the separatrices, and some of the functions describing
averaging become unbounded, adding extra complexity to the study of the averaging method near separatrices.
In particular, this also applies to resonances near separatrices. There is a standard procedure that describes
the passage through a resonant zone using an auxiliary equation, an equation of pendulum type with a small
perturbation. In our case, if this procedure is applied straightforwardly, the amplitude of the perturbation
(for the auxiliary system) grows when considered resonance approaches the separatrices. However, additional
analysis allows us to split this perturbation into a Hamiltonian part that does not contribute to capture into
resonances and a dissipative part that does not grow near separatrices. One interesting corollary of our analysis
is that auxiliary systems describing resonances such that capture can happen converge to a finite number of
limit systems, which can be written in terms of Melnikov function [28] describing the splitting of separatrices
due to the perturbation. Finally, there is also a small zone near the separatrices where different resonant
zones overlap. In this zone the dynamics is very complicated due to Chirikov criterion [29], but, fortunately,
this zone is so small that a volume argument yields a good estimate for the time spent in this zone by most
solutions.

Future plans. In an ongoing project with Dmitry Dolgopyat, Bassam Fayad, and Jaime Paradela, we study
averaging for time intervals longer than O(ε−1). While for time intervals of order ε−1 getting estimates on the
accuracy of averaging requires only estimating the amplitude of scattering on each resonance and adding those
together, longer time intervals require a much more delicate approach that takes into account how scattering
on different resonances is related. This was done by D. Dolgopyat [30] in a setting when there is only a finite
number of resonances (but each of them is crossed many times, and the number of crossings goes to infinity
when ε → 0). In the setup of [30] the system has an adiabatic invariant, i.e., a quantity that is constant along
the solutions of averaged system9; however, scattering on resonances leads to a jump of the adiabatic invariant
of order

√
ε each time the system crosses a resonance; those jumps lead to an evolution of the adiabatic

observed on time intervals ≫ ε−1. Dolgopyat established that different jumps of resonances can be treated
as ”independent random variables”, in particular, their sum satisfies the law of large numbers. This gives a
long-term description of the evolution of the adiabatic invariant. The goal of our project is to obtain a similar
description for general two-frequency systems. The main novelty of this setting is that, typically, resonances
occur at all rational values of ω2/ω1 compared to a discrete set in [30]. We also hope that the techniques we
develop will contribute to the study of random perturbations of standard-like maps [31, 32]. Standard-like
maps naturally appear as Poincaré maps between different resonances, and, as for the random perturbations
setting, a different map is applied each time.

3.4 Second order averaging and formulas for crossing phase

While the standard, or first order, averaging method which is described above allows to track the evolution
of slow variables (I and z in the notation of Section 3.2), it cannot be used to track the evolution of the fast
variable φ. This variable φ is the angle from the pair of action-angle variables, it is also commonly called the
phase. Tracking its evolution is important in many applied problems: for instance, tracking the phase allows
one to determine which of the two potential wells the particle will be captured into for the example in Figure 4a.
The standard tool used to this end is the second order averaging method. For perturbations of one-frequency
systems far from separatrices, it allows to track the slow variables with an error O(ε2) and the phase with
an error O(ε). However, the order two averaged system by itself does not predict the phase after a solution
crosses a separatrix or (for two or more frequencies) a resonance. In fact, the phase is not even defined on a
separatrix. To address this difficulty, a crossing phase is introduced; it is a variable containing the information

8As they are quite cumbersome, we refer the reader to [20] for a precise statement.
9Such systems are very frequent in applications, e.g., systems with the Hamiltonian slowly depending on the time or slow-fast

Hamiltonian systems. For these cases, adiabatic invariants are the action variables of the unperturbed system.
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on the fast variables at the moment of separatrix crossing. Knowing the crossing phase allows one to track
the phase φ after a separatrix crossing. Formulas for crossing phase are known in several different settings
when the perturbed system is also Hamiltonian ([24] and references therein). Such formulas are important for
the study of probabilistic phenomena associated with separatrix crossing, as the phase determines the domain
where the trajectory is captured after a separatrix crossing when capture into multiple domains is possible,
as well as the jump of slow variables caused by a separatrix crossing.

In [22] (joint with A. Neishtadt), we estimate the accuracy of the second order averaging method for
small perturbations of one-frequency Hamiltonian systems near separatrices and prove a formula for crossing
phase. Unlike the previous results, we do this for arbitrary (i.e., possibly non-Hamiltonian) perturbations of
one-frequency systems. In [33] (joint with Yuyang Gao and A. Neishtadt) we prove a formula for the phase at
resonant crossing for slow-fast Hamiltonian systems with one fast angular variable (phase) whose frequency
vanishes on some surface in the space of slow variables (a resonant surface). This formula was suggested in [34]
on the basis of a heuristic consideration; we prove it rigorously and estimate its accuracy.

Future plans. An ongoing project with Anatoly Neishtadt, Stas Minkov, and Ivan Shilin is to obtain a
formula for the phases on a resonance for perturbations of two-frequency systems. This question is open even
for the case of just one resonance, and a necessary first step in this direction is improving the accuracy of the
existing formulas ([33] and references therein) for the phase on a resonance in the one-frequency case, which
is of independent interest and should also allow us to improve the accuracy of the existing formulas for the
change of slow variables due to crossing a resonance.

Another open problem is to study consecutive separatrix crossings when the perturbed system is not
Hamiltonian. For the Hamiltonian case there are formulas (e.g., [35]) for the jump of slow variables due to
separatrix crossing, while it is still an open question to find an analogue of these formulas when the perturbation
is non-Hamiltonian. Together with our formula for the phase change, this will enable the study of consecutive
separatrix crossings for the general case, as done for the Hamiltonian case in [36, 37].

4 Discrete time dynamics: attractors, skew products, and iterated
function systems

4.1 Transitive Anosov diffeomorphism with an invariant horseshoe attracting a
set of full Lebesgue measure

Consider a dynamical system F : X 7→ X and an invariant probability measure µ. The basin of µ is the set
of all points x ∈ X such that the sequence of measures δnx = 1

n (δx + · · · + δFn−1(x)) converges to µ in the
weak-* topology. A measure is called physical if its basin has positive Lebesgue measure. By classical results
of Sinai, Ruelle and Bowen, any C2-smooth transitive Anosov diffeomorphism has a unique physical measure
supported on the whole phase space and having the basin with full Lebesgue measure. So, the attractor ”from
the point of view of Lebesgue measure”10 is the whole phase space as well. When the diffeomorphism is only
C1-smooth, there is a classical example of Bowen [38] of an Anosov diffeomorphism on the 2-torus that has
an invariant horseshoe with positive Lebesgue measure. This example implies that the description of physical
measures above does not hold in the C1 case, however, one can still ask if the attractor ”from the point of
view of Lebesgue measure” is necessarily the whole phase space. Motivated by this question, we construct a
counterexample in a joint paper [39] with C. Bonatti, S. Minkov, and I. Shilin. Our example is a transitive
C1-smooth Anosov diffeomorphism on the 2-torus such that

• It has an invariant horseshoe and a physical measure supported on this horseshoe. The horseshoe has
zero Lebesgue measure.

• The basin of attraction of this physical measure has full Lebesgue measure.

• For almost any point x ∈ T2 with respect to the Lebesgue measure, the forward orbit of x is attracted
to the horseshoe (i.e., outside of any neighborhood of the horseshoe there are just finitely many points
of the orbit).

Our example can be seen as complementary to the example by C. Robinson and L.S. Young [40] of an Anosov
diffeomorphism with nonabsolutely continuous stable foliation, also for a C1-smooth Anosov diffeomorphism
on the 2-torus. While the example of Robinson and Young has a horseshoe with positive Lebesgue measure
such that its stable foliation has zero measure outside some small neighborhood of the horseshoe (and hence is
not absolutely continuous), in our example the horseshoe has zero Lebesgue measure, but its stable foliation
has full measure.

10One possible formal definition of such attractor is the Milnor attractor discussed below in Section 4.3.
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Our construction is based on the example by Bowen [38], which can be easily modified to get a horseshoe
that is a product of a positive measure Cantor set in the unstable direction and a zero measure Cantor set in
the stable direction. It also follows from this construction that the local stable foliation of the horseshoe has
positive Lebesgue measure and the horseshoe supports a physical measure attracting a full measure subset
of the local stable foliation. The hard part of our paper is to make sure the global stable foliation of the
horseshoe has full and not just positive Lebesgue measure; control of distortion technique cannot be used to
this end as the map is only C1-smooth. At this point our construction becomes implicit and rather technical:
we construct a class of Anosov diffeomorphism having an invariant horseshoe as described, and prove that on
a residual subset of this class the stable foliation of the horseshoe has full Lebesgue measure.

4.2 Iterated function systems on the circle

An iterated function system (IFS) is a tuple of maps f1, . . . , fk on a manifold M ; fi : M 7→ M . In a joint
project [41] with Victor Kleptsyn and Yury Kudryashov we study topological properties of IFS’s on the circle
such that the maps fi are orientation preserving diffeomorphisms or homeomorphisms.

We prove a general alternative holding on an open and dense subset of Cr-smooth IFS’s for any r ≥ 1:

• either the IFS has an absorbing domain, i.e., there exists a finite union of disjoint circle arcs U such that
fi(U) ⊂ U for i = 1, . . . k and U is not the whole circle or the empty set

• or the IFS is minimal, i.e., for any x ∈ S1 its orbit under the semigroup generated by f1, . . . , fk is dense.
Moreover, it is also robustly minimal in the sense that its small (in C1) perturbations are also minimal.

We also study conditions required for global synchronization for the minimal case and present several examples
illustrating possible degenerate dynamics.

Both minimal IFS’s and IFS’s with absorbing domain are well studied (let us mention [42] for the minimal
case and [43] where IFS’s on the segment are studied; the absorming domain case is similar to the segment
case). Our alternative shows that, generically, they exhaust all possibilities. For the case of two generators f1,
f2 that are close to rotations, explicit conditions for minimality were given by Pablo Barrientos and Artem
Raibekas [44] in terms of the periodic orbits of the generators. Also, very recently ([45], in preparation) Spencer
Durham and Todd Fisher gave similar conditions for minimality for an arbitrary number of generators. Our
result complements this picture: while it only works for generic IFS’s (i.e. for an open and dense subset), it
works for any number of generators that can be arbitrary far from rotations, and the condition for minimality
is very easy and natural (no absorbing domain).

While the alternative is purely topological, its proof uses random dynamics generated by the IFS: we
equip the maps fi with positive probabilities (the particular choice of the probabilities is not important)
and consider random iterations. The tools we use are the properties of the stationary measures for this
random dynamical system (they were described by Dominique Malicet [46] for a very general situation when
fi are just homeomorphisms) as well as the behavior of rotation number (for random iterations) in monotone
one-parametric families of IFS’s.

Future plans in this area include obtaining a similar alternative (transitivity or an absorbing domain)
for partially hyperbolic skew products, a setting closely related with IFS’s as discussed below in Section 4.3.
It would be important for many applications, e.g. for time-periodic perturbations of chaotic systems.

4.3 Milnor attractors of skew products

Milnor’s definition of attractor. For a continuous map f : M 7→ M on a Riemannian manifold M , the
Milnor attractor of f is a closed subset of M that attracts almost any point with respect to Lebesgue measure,
and contains no smaller subset that does so. This definition due to Milnor [47] (he used the term ”likely limit
set”) looks very natural, but it is quite hard to work with as it mixes topological (it must be closed) and
measure-theoretic properties. One particular difficulty is that the Milnor attractor is not necessarily preserved
after a conjugacy by a homeomorphism: the example from Section 4.1 has the horseshoe as the Milnor
attractor, but is conjugate to a linear Anosov diffeomorphism, which has the whole torus as the attractor.
Step skew products. A step skew product is a single map that captures the dynamics of an iterated function
system f1, . . . , fk on some manifold M . It is a skew product over the left shift σ on the space {1, . . . , k}Z of
two-sided sequences such that the fiber map is one of the maps f1, . . . , fk depending on the zeroth element of
the sequence in the base:

(ω, x) 7→ (σω, fω0
(x)), ω ∈ {1, . . . , k}Z, x ∈ M.

Step skew products are often used as a model of partially hyperbolic dynamics, and robust properties found
in the class of step skew products can often be recreated for smooth partially hyperbolic skew products and
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their small perturbations, yielding a property locally generic in the space of all diffeomorphisms (this is done,
e.g., in [48]). Milnor’s definition of attractor can be naturally generalized to step skew products: one equips
the generators fi with some positive probabilities and takes the product of Bernoulli measure in the base and
Lebesgue measure in the fiber as the reference measure.
Attractors of step and partially hyperbolic skew products. Questions about Milnor attractor of skew
products with one-dimensional fiber were actively advertised by Yulij Ilyashenko when I was his PhD student.
They are motivated by two very unusual properties of Milnor attractor that happen locally generically in
the class of boundary-preserving skew products with the fiber a segment. The first one is Lyapunov unstable
Milnor attractor, this happens for I. Kan’s intermingled basins example [49]. Another one is thick Milnor
attractor, i.e. Milnor attractor with a positive, but not full Lebesgue measure (Yu. Ilyashenko, [48]). Let us
emphasize that while it is easy to construct a single example of a map having any of these properties, both
examples above are locally generic among boundary preserving skew products.

I showed that both examples are not generic among circle skew products; it follows that they are also not
generic for the interval fiber if this interval is mapped strictly inside itself by the fiber maps. In [50] Lyapunov
stability of Milnor attractor is proved for generic partially hyperbolic skew products with the fiber a circle
and a transitive Anosov diffeomorphism in the base, together with an alternative that the attractor has either
full or zero measure. In [51] (joint with Ivan Shilin) the same is done for generic step skew products with
circle fiber. The main ingredients of the proofs are a semicontinuity argument and the fact that the Milnor
attractor is saturated by the unstable leaves.

Finally, I would like to mention a natural question in this field remaining wide open: is it true that
generically the Milnor attractor of a skew product with circle fiber (either step or partially hyperbolic) is
not only Lyapunov stable, but asymptotically stable as well (i.e., is it true that the Milnor attractor actually
attracts all points in its small neighborhood).
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